Kamis, 17 Januari 2013

Pipelining dan RISC serta Prosesor Paralel


ARTIKEL 1
PIPELINING dan RISC
1.     Pengertian Pipeline
       Pipeline adalah suatu cara yang digunakan untuk melakukan sejumlah kerja secara bersama tetapi dalam tahap yang berbeda yang dialirkan secara kontinu pada unit pemrosesor. Dengan cara ini, maka unit pemrosesan selalu bekerja. Teknik pipeline ini dapat diterapkan pada berbagai tingkatan dalam sistem komputer. Bisa pada level yang tinggi, misalnya program aplikasi, sampai pada tingkat yang rendah, seperti pada instruksi yang dijaankan oleh microprocessor.
        Pada microprocessor yang tidak menggunakan  pipeline , satu instruksi dilakukan sampai selesai, baru instruksi berikutnya dapat dilaksanakan. Sedangkan dalam microprocessor yang menggunakan teknik pipeline, ketika satu instruksi sedangkan diproses, maka instruksi yang berikutnya juga dapat diproses dalam waktu yang bersamaan. Tetapi, instruksi yang diproses secara bersamaan ini, ada dalam tahap proses yang berbeda. Jadi, ada sejumlah tahapan yang akan dilewati oleh sebuah instruksi.
Dengan penerapan  pipeline  ini pada microprocessor akan didapatkan peningkatan kinerja microprocessor. Hal ini terjadi karena beberapa instruksi dapat dilakukan secara parallel dalam waktu yang bersamaan. Secara kasarnya diharapkan akan didapatkan peningkatan sebesar K kali dibandingkan dengan microprocessor yang tidak menggunakan  pipeline , apabila tahapan yang ada dalam satu kali pemrosesan instruksi adalah K tahap.

      Karena beberapa instruksi diproses secara bersamaan ada kemungkinan instruksi tersebut sama-sama memerlukan resource yang sama, sehingga diperlukan adanya pengaturan yang tepat agar proses tetap berjalan dengan benar dan lancar. Sedangkan ketergantungan terhadap data bisa muncul, misalnya instruksi yang berurutan memerlukan data dari instruksi yang sebelumnya. Kasus Jump, juga perlu perhatian, karena ketika sebuah instruksi meminta untuk melompat ke suatu lokasi memori tertentu, akan terjadi perubahan program counter, sedangkan instruksi yang sedang berada dalam salah satu tahap proses yang berikutnya mungkin tidak mengharapkan terjadinya perubahan program counter.
       Teknik pipeline yang diterapkan pada microprocessor, dapat dikatakan sebuah arsitektur khusus. Ada perbedaan khusus antara model microprocessor yang tidak menggunakan arsitektur  pipeline  dengan microprocessor yang menerapkan teknik ini.
         Pada microprocessor yang tidak menggunakan  pipeline , satu instruksi dilakukan sampai selesai, baru instruksi berikutnya dapat dilaksanakan. Sedangkan dalam microprocessor yang menggunakan teknik  pipeline   ketika satu instruksi sedangkan diproses, maka instruksi yang berikutnya juga dapat diproses dalam waktu yang bersamaan. Tetapi, instruksi yang diproses secara bersamaan ini, ada dalam tahap proses yang berbeda.
        Jadi, ada sejumlah tahapan yang akan dilewati oleh sebuah instruksi. Misalnya sebuah microprocessor menyelesaikan sebuah instruksi dalam 4 langkah. Ketika instruksi pertama masuk ke langkah 2, maka instruksi berikutnya diambil untuk diproses pada langkah 1 instruksi tersebut. Begitu pun seterusnya, ketika instruksi pertama masuk ke langkah 3, instruksi kedua masuk ke langkah 2 dan instruksi ketiga masuk ke langkah 1.
        Teknik  pipeline  ini menyebabkan ada sejumlah hal yang harus diperhatikan sehingga ketika diterapkan dapat berjalan dengan baik.

Tiga kesulitan yang sering dihadapi ketika menggunakan teknik  pipeline  ini adalah :
  1. Terjadinya penggunaan resource yang bersamaan
  2. Ketergantungan terhadap data, dan
  3. Pengaturan Jump ke suatu lokasi memori.

Instruksi pada pipeline
  • Mengambil instruksi dan membuffferkannya
  • Ketika tahapan kedua bebas tahapan pertama mengirimkan instruksi yang dibufferkan tersebut
  • Pada saat tahapan kedua sedang mengeksekusi instruksi ,tahapan pertama memanfaatkan siklus memori yang tidak dipakai untuk mengambil dan membuffferkan instruksi berikutnya
  •  
.Berikut ini adalah gambaran tentang Instuksi pipeline :


Karena untuk setiap tahap pengerjaan instruksi, komponen yang bekerja berbeda, maka dimungkinkan untuk mengisi kekosongan kerja di komponen tersebut. Sebagai contoh :

Instruksi  1 : ADD  AX, AX Instruksi 2: ADD EX, CX

Setelah CU menjemput instruksi 1 dari memori (IF), CU akan menerjemahkan instruksi tersebut(ID). Pada menerjemahkan instruksi  1 tersebut, komponen IF tidak bekerja. Adanya teknologi pipeline menyebabkan IF akan menjemput instruksi 2 pada saat ID menerjemahkan instruksi 1. Demikian seterusnya pada saat CU menjalankan instruksi 1 (EX), instruksi 2 diterjemahkan (ID).

Contoh pengerjaan instruksi tanpa pipeline :

Contoh pengerjaan instruksi dengan pipeline :
 

         Dengan adanya  pipeline  dua instruksi selesai dilaksanakan padadetik keenam (sedangkan pada kasus tanpa pipeline baru selesai pada detik kesepuluh). Dengan demikian telah terjadi percepatan sebanyak 1,67x dari 10T menjadi hanya 6T. Sedangkan untuk pengerjaan 3 buah instruksi terjadi percepatan sebanyak 2, 14x dari 15T menjadi hanya 7T.
       Untuk kasus  pipeline  sendiri, 2 instruksi dapat dikerjakan dalam 6T (CPI = 3) dan instruksi dapat dikerjakan dalam 7T (CPT = 2,3) dan untuk 4 instruksi dapat dikerjakan dalam  8T (CPI =2). Ini berarti untuk 100 instruksi akan dapat dikerjakan dalam 104T (CPI = 1,04). Pada kondisi  ideal CPI akan harga 1.

Konsep Pipeline
        Konsep pemrosesan  pipeline  dalam suatu komputer mirip dengan suatu baris perakitan dalam suatu pabrik industri. Ambil contoh, suatu proses pembuatan sebuah mobil: anggaplah bahwa langkah-langkah tertentu di jalur perakitan adalah untuk memasang mesin, memasang kap mesin, dan memasang roda (dalam urutan tersebut, dengan langkah arbitrary interstitial). Sebuah mobil di jalur perakitan hanya dapat memiliki salah satu dari tiga tahap yang dilakukan sekaligus.
      Setelah mobil memiliki mesin yang terpasang, bergerak ke bagian pemasangan kap, meninggalkan fasilitas pemasangan mesin yang tersedia untuk mobil berikutnya. Mobil pertama kemudian pindah ke pemasangan roda, mobil kedua untuk pemasangan kap, dan mobil ketiga dimulai untuk pemasangan mesin. Jika instalasi mesin membutuhkan waktu 20 menit, instalasi kap mobil memakan waktu 5 menit, dan instalasi roda membutuhkan waktu 10 menit, kemudian menyelesaikan semua tiga mobil ketika hanya satu mobil dapat dioperasikan sekaligus akan memakan waktu 105 menit.
      Di sisi lain, dengan menggunakan jalur perakitan, total waktu untuk menyelesaikan ketiga adalah 75 menit. Pada titik ini, mobil selanjutnya akan datang dari jalur perakitan pada kenaikan 20 menit.

Masalah-masalah pada Pipeline
        Dengan adanya persyaratan bahwa setiap instuksi yang berdekatan harus tidak saling bergantung, maka ada kemungkinan terjadinya situasi dimana pipeline gagal dilaksanakan (instruksi berikutnya tidak bisa dilaksanakan). Situasi ini disebut Hazards. Hazards mengurangi performansi dari CPU dimana percepatan ideal tidak dapat dicapai.
Ada 3 kelompok Hazards :
  1. Structural Hazards muncul dari konflik resource sistem yaitu ketika hardware tidak dapat mensuport semua kemungkinan kombinasi pelaksanaan instruksi. 
  2. Data Hazards muncul ketika data untuk suatu instruksi tergantung pada hasil instruksi sebelumnya. 
  3. Control Hazards muncul pada pelaksanaan instruksi yang mengubah PC (contoh : branch).
        Adanya Hazards menyebabkan pipeline terhambat (stalled). Tidak ada instruksi baru yang dijemput sampai hambatan itu selesai. Ini berarti instruksi-instruksi selanjutnya akan ditunda pula penjemputannya.

Keuntungan dari Pipeline
  1. Waktu siklus prosesor berkurang, sehingga meningkatkan tingkat instruksi-isu dalam kebanyakan kasus.
  2. Beberapa combinational sirkuit seperti penambah atau pengganda dapat dibuat lebih cepat dengan menambahkan lebih banyak sirkuit.
Jika  pipeline  digunakan sebagai pengganti, hal itu dapat menghemat sirkuit vs combinational yang lebih kompleks sirkuit.

Kerugian dari Pipeline
  1. Prossesor  non-pipeline hanya menjalankan satu instruksi pada satu waktu. Hal ini untuk mencegah penundaan cabang (yang berlaku, setiap cabang tertunda) dan masalah dengan serial instruksi dieksekusi secara bersamaan. Akibatnya desain lebih sederhana dan lebih murah untuk diproduksi.
  2. Instruksi latency di prossesor non-pipeline sedikit lebih rendah daripada dalam pipeline setara. Hal ini disebabkan oleh fakta bahwa sandal jepit ekstra harus ditambahkan ke jalur data dari prossesor pipeline.
  3. Prossesor non-pipeline akan memiliki instruksi bandwidth yang stabil. Kinerja prossesor yang pipeline jauh lebih sulit untuk meramalkan dan dapat bervariasi lebih luas di antara program yang berbeda.
        
        Demikianlah penjelasan mengenai  pipeline  yang saya dapatkan ketika kuliah. Semoga apa yang saya share memberikan manfaat bagi kawan-kawan yang kesulitan mencari penjelasan mengenai  pipeline .

2.  Prosessor Vector Pipelining
1. Berkurangnya kontensi memori karena adanya akses memori yang lebih sedikit
2. Berkurangnya pendekodean instruksi
3. Tingkah lakunya bias diramalkan, hal ini khususnya penting bagi:
-       Pengindeksan implicit dan akses memori
-       Pencabangan implicit
-       Terdapat berbagai macam instruksi pada register to register
Siklus Instruksi memiliki 2 Fase:
1. I : Instruction Fetch (Pengambilan Instruksi)
2. E : Execute (Melakukan operasi ALU dengan register input dan output)
Operasi Load danStore memiliki3 Fase:
1. I : Instruction Fetch
2. E : Execute (Menghitung alamat memori)
3. D : Memory (Operasi register ke memori atau memori ke register)

3.       RISC (Reduced Istructioon Set Computer)
RISC adalah komputasi kumpulan instruksi yang disederhanakan. RISC merupakan sebuah arsitektur komputer atau arsitektur komputasi modern dengan instruksi-instruksi dan jenis eksekusi yang paling sederhana. Arsitektur ini digunakan pada komputer dengan kinerja tinggi, seperti komputer vektor. Selain digunakan dalam komputer vektor, desainini juga diimplementasikan pada prosesor komputer lain, seperti pada beberapamikroprosesor Intel 960, Itanium (IA64) dari Intel Corporation, Alpha AXP dari DEC, R4x00dari MIPS Corporation, PowerPC dan Arsitektur POWER dari International Business Machine.Selain itu, RISC juga umum dipakai pada Advanced RISC Machine (ARM) dan StrongARM (termasuk di antaranya adalah Intel XScale), SPARC dan UltraSPARC dari Sun Microsystems,serta PA-RISC dari Hewlett-Packard.
Pada arsitektur RISC : Set instruksi yang terbatas dan sederhana Register general purpose yang berjumlah banyak, atau penggunaanteknologi kompiler untuk mengoptimalkan pemakaian registernya. Konsep arsitektur RISC banyak menerapkan proses eksekusi pipeline. Meskipun jumlah perintah tunggal yang diperlukan untuk melakukan pekerjaan yang diberikan mungkin lebih besar, eksekusi secara pipeline memerlukan waktu yang lebih singkat daripada waktu untuk melakukan pekerjaan yang sama dengan menggunakan perintah yang lebih rumit.Mesin RISC memerlukan memori yang lebih besar untuk mengakomodasi program yang lebih besar. IBM 801 adalah prosesor komersial pertama yang menggunakan pendekatan RISC.

KARAKTERISTIK RISC
-          Satu instruksi pers iklus
-          Operasi register to register
-          Mode pengalamatan yang sederhana
-          Format instruksi yang sederhana
-          Desain hardwired (tanpamicrocode)
-          Format instruksi yang fix
-          Proses compile yang cepat
Aspek komputasi yang ditinjau dalam merancang mesin RISC adalah sbb.: Operasi-operasi yang dilakukan: Hal ini menentukan fungsi-fungsi yang akan dilakukan oleh CPU dan interaksinya dengan memori. Operand-operand yang digunakan: Jenis-jenis operand dan frekuensi pemakaiannya akan menentukan organisasi memori untuk menyimpannya dan mode pengalamatan untuk mengaksesnya. Pengurutan eksekusi: Hal ini akan menentukan kontrol dan organisasi pipeline. Eksekusi Instruksi

ARTIKEL 2
PROSESOR PARALEL

1.       Pengertian Interkoneksi
Interkoneksi adalah keterhubungan secara fisik dan logika dari jaringan komunikasi umum yang digunakan oleh operator yang sama atau berbeda untuk memungkinkan pengguna dari satu operator untuk berkomunikasi dengan operator yang sama atau operator lainnya, atau untuk mengakses layanan yang disediakan oleh operator lain. Layanan bisa disediakan oleh bagian yang terlibat atau bagian lain yang mendapat akses ke jaringan.
Hakekat interkoneksi antar-jaringan adalah interkoneksi antar Sentral Gerbang (SG) melalui suatu titik interkoneksi (POI - Point of Interconnection) yang secara keseluruhan akan membentuk satu kesatuan sistem telekomunikasi end-to-end melalui switching. Tiap Penyelenggara jaringan telekomunikasi yang berinterkoneksi wajib menyediakan SG pada sisi masing-masing dan harus memenuhi persyaratan SG.
Dengan perubahan teknologi yang terus berkembang serta iklim kompetisi yang semakin intensif, banyak bentuk-bentuk interkoneksi yang telah dikembangkan. Kesemuanya melibatkan keterhubungan jaringan agar memungkinkan pelanggan dari suatu jaringan untuk berkomunikasi dengan pelanggan-pelanggan lain dari jaringan yang berbeda atau untuk mendapatkan akses terhadap layanan yang ditawarkan oleh operator jaringan lain.

2.         Mesin SIMD
SIMD merupakan salah satu bentuk dari paralel sinkron yang memproses satu instruksi dengan banyak prosesor elemen pada waktu yang sama. Di dalam paradigma SIMD yang paling penting bukanlah kontrol prosesor melainkan data. Data diproses oleh masing-masing elemen pemroses yang berbeda dari satu prosesor ke prosesor lainnya. Sehingga satu program dan satu kontrol unit bekerja secara bersamaan pada kumpulan data yang berbeda. Untuk memproses data secara efisien, SIMD membuat pengaturan proses menjadi dua phase, yaitu : pertama memilah dan mendistribusikan data (data partitioning and distribution) dan yang kedua memproses data secara paralel (data paralel prosesing). Jadi efisiensi akan tergantung kepada banyaknya permasalahan yang harus diselesaikan secara paralel. Cara terbaik dalam menggunakan SIMD adalah dengan mencocokan banyaknya permasalahan dengan banyaknya prosesor paralel. Banyaknya permasalahan berarti seberapa banyak jumlah data yang akan di perbaharui dan banyaknya prosesor paralel berarti jumlah prosesor yang tersedia. Jadi jika permasalahanya sebanding dengan prosesor paralel maka kecepatan tertinggi dapat terjadi, sebaliknya apabila permasalahan hanya satu dengan prosesor paralel yang banyak menyebabkan sistem SIMD menjadi tidak efektif. SIMD sering diidentikan sebagai permasalahan paralel yang sederhana, padahal tidaklah benar karena paradigma SIMD sangat berguna dalam menyelesaikan permasalahan yang memiliki beberapa data yang perlu diperbaharui secara serempak. Khususnya sangat berguna untuk perhitungan numerik biasa seperti perhitungan matrix dan vektor.

3.         Mesin MIMD
MIMD berarti banyak prosesor yang dapat mengeksekusi instruksi dan data yang berbeda-beda secara bersamaan. Lebih lanjut sebagai bagian dari komputer, prosesor memiliki otonom yang besar dalam melakukan operasinya. Secara umum MIMD digunakan ketika banyak permasalahan heterogen yang harus diselesaikan pada waktu yang sama. MIMD sangat baik digunkan untuk meneyelesaikan permasalahan yang besar, sebab melebihi data dan kontrol yang harus dilewatkan dari task ke task. Sebagai contoh dalam analogi sebuah Bank, MIMD akan menampilkan kerja terbaiknya ketika masing-masing teller memiliki beberapa transaksi yang harus diselesaikan satu persatu tanpa ada pembuangan waktu dan penghentian dari beberapa bagian transaksi. Tetapi pada sistem MIMD akan dibingungkan oleh aliran data (dataflow) paralel, karena aliran data tersebut harus dikerjakan oleh mesin MIMD secara terus menerus.

4.         Arsitektur Komputer Parallel terdiri dari:

 

1. Komputer SISD (Single Instruction stream-Single Data stream)
2. Komputer SIMD (Single Instruction stream-Multiple Data stream)
3. Komputer MISD (Multiple Instruction stream-Single Data stream)
4. MIMD (Multiple Instruction stream-Multiple Data stream)

Referensi :
-          http://id.wikipedia.org/wiki/SIMD

Tidak ada komentar:

Posting Komentar