Rabu, 14 November 2012

1. Input/Output Unit


Sistem bus.
Bus adalah Jalur komunikasi yang dibagi pemakai Suatu set kabel tunggal yang digunakan untuk menghubungkan berbagai subsistem. Karakteristik penting sebuah bus adalah bahwa bus merupakan media transmisi yang dapat digunakan bersama. Sistem komputer terdiri dari sejumlah bus yang berlainan yang menyediakan jalan antara dua buah komponen pada bermacam-macam tingkatan hirarki sistem komputer.
Suatu Komputer tersusun atas beberapa komponen penting seperti CPU, memori, perangkat Input/Output. setiap computer saling berhubungan membentuk kesatuan fungsi. Sistem bus adalah penghubung bagi keseluruhan komponen computer dalam menjalankan tugasnya. Transfer data antar komponen komputer sangatlah mendominasi kerja suatu computer. Data atau program yang tersimpan dalam memori dapat diakses dan dieksekusi CPU melalui perantara bus, begitu juga kita dapat melihat hasil eksekusi melalui monitor juga menggunakan system bus.

Standar input/output interface.
Kebutuhan bus I/O berkecepatan tinggi dan semakin cepatnya prosesor saat ini yang mencapai 1 GHz, maka perlu diimbangi dengan bus berkecepatan tinggi juga. Bus SCSI dan PCI tidak dapat mencukupi kebutuhan saat ini. Sehingga dikembangkan bus performance tinggi yang dikenal dengan FireWire (P1393 standard IEEE). P1394 memiliki kelebihan dibandingkan dengan interface I/O lainnya, yaitu sangat cepat, murah, dan mudah untuk diimplementasikan. Pada kenyataan P1394 tidak hanya popular pada system computer, namun juga pada peralatan elektronik seperti pada kamera digital, VCR, dan televise. Kelebihan lain adalah penggunaan transmisi serial sehingga tidak memerlukan banyak kabel.

Pengaksesan peralatan input/output.
Pengolahan Perangkat Input/Output merupakan pengolahan perangkat lunak yang mengatasi penggunaan perangkat masukan dan keluaran. Pengelolaan perangkat I/O merupakan aspek perancangan sistem operasi yang terluas karena beragamnya peralatan dan begitu banyaknya aplikasi dari peralatan-peralatan itu. Manajemen I/O mempunyai fungsi, di antaranya:
·   Mengirim perintah ke perangkat I/O agar menyediakan layanan.
·   Menangani interupsi peralatan I/O
·  Menangani kesalahan pada peralatan I/O
·  Memberi interface ke pemakai.
Berdasarkan sasaran komunikasi, klasifikasi perangkat I/O atau divice dibagi menjadi beberapa tipe. Tipe-tipe device secara umum dibagi menjadi device penyimpanan (disk, tape), transmission, device (peralatan yang cocok untuk komunikasi dengan peralatan-peralatan jarak jauh seperti modem) dan human-interface device (Peralatan yang terbaca oleh manusia seperti keyboard, mouse). Device- device tersebut dikontrol oleh instruksi I/O. Alamat-alamat yang dimiliki oleh device akan digunakan oleh direct I/O instruction dan memory-mapped I/O .
Klasifikasi lain yang dapat dilakukan terhadap peralatan I/O adalah berdasarkan unit transfer yang dilakukan perangkat I/O, yaitu sbb:
a) Perangkat berorientasi blok (block-oriented devices) Peralatan mentransfer dari dan ke  peralatan dengan satuan transfer adalah satu blok (sekumpulan karakter) yant telah ditentukan.
b) Perangkat berorientasi aliran karakter (character-oriented devices) Peralatan mentransfer dari dan ke peralatan berupa aliran karakter.

2. Arsitektur Famili Komputer (IBM)
Famili IBM PC dan turunannya.
IBM (International Business Machines) merupakan sebuah perusahaan hardware yang mengembangkan software – software yang sudah ada seperti UNIX dan WINDOWS. Oleh karena itu IBM sendiri merupakan sebuah perusahaan bukan system operasi, hanya saja IBM mencoba mengembangkan OS yang telah ada seperti OS dari UNIX dan LINUX.IBM PC adalah sebutan untuk keluarga komputer pribadi buatan IBM. IBM PC diperkenalkan pada 12 Agustus 1981, dan "dipensiunkan" pada tanggal 2 April 1987. Sejak diluncurkan oleh IBM, IBM PC memiliki beberapa keluarga, yakni :
·  IBM 4860 PCjr
·  IBM 5140 Convertible Personal Computer (laptop)
·  IBM 5150 Personal Computer (PC yang asli)
·  IBM 5155 Portable PC (sebenarnya merupakan PC XT yang portabel)
·  IBM 5160 Personal Computer/eXtended Technology
·  IBM 5162 Personal Computer/eXtended Technology Model 286 (sebenarnya  merupakan PC AT)
·  IBM 5170 Personal Computer/Advanced Technology

Konfigurasi microkomputer dassar.
Komputer adalah sistem elektronik untuk memanipulasi data yang cepat dan tepat serta dirancang dan diorganisasikan supaya secara otomatis menerima dan menyimpan data input. Memprosesnya, dan menghasilkan output dibawah pengawasan suatu langkah-langkah instruksi-instruksi program yang tersimpan di memori (stored program).Menurut buku komputer organization (V.C Hamacher Z.G. Vranesic S.G. Zaky).Komputer adalah mesin penghitung elektronik yang cepat dapat menerima informasi input digital, memprosesnya sesuai dengan suatu program yang tersimpan di memorinya (stored program) dan menghasilkan output informasi.Menurut buku introduction To The Computer, The Tool Of Business (William M. Fuori).Komputer adalah suatu alat pemproses data (data processor) yang dapat melakukan perhitungan yang besar dan cepat, termasuk perhitungan aritmetika yang besar atau operasi logika, tanpa campur tangan dari manusia mengoperasikan selama pemprosesan (definisi ini diambilkan dari American National Standar Institute dan sudah didiskusikan serta sudah disetujui dalam suatu pertemuan Internasional Organization For Standardization Tehnical Commite).Menurut buku Introduction to Computers (gordon B. Davis) :Komputer adalah tipe khusus alat penghitung yang mempunyai sifat tertentu yang pasti.Dari beberapa definisi yang tersebut, dapat disimpulkan bahwa komputer adalah :1.Alat elektronik2.Dapat menerima input data3.Dapat mengolah data4.Dapat memberikan informasi5.Menggunakan suatu program di memori komputer (stored program).6.Dapat menyimpan program dan hasil pengolahan7.Bekerja secara otomatis.

Komponen IBM PC.
Sistem kontrol BUS : Pengontrol BUS, Buffer Data, dan Latches Alamat
·    Sistem kontrol interuppt : Pengontrol Interuppt
·     Sistem kontrol RAM & ROM : Chip RAM & ROM, Decoder Alamat, dan Buffer
·     Sistem kontrol DMA : Pengontrol DMA
·     Timer : Timer Interval Programmable
·     Sistem kontrol I/O : Interface Paralel Programmable

Sistem software
Agar user dapat memasukkan dan menjalankan program aplikasi, maka komputer harus sudah berisi beberapa software sistem dalam memori-nya. Software sistem adalah kumpulan program yang dieksekusi seperlunya untuk menjalankan fungsi seperti :
·         Menerima dan menginterpretasikan perintah user
·         Memasukkan dan tnengedit program aplikasi dan rnenyimpannya sebagai file dalam peralatan penyimpanan sekunder
·         Mengatur penyimpanan dan pengambilan file dalam peralatan penyimpanan sekunder
·         Menjalankan program aplikasi standar seperti word processor, spreadsheet, atau game, dengan data yang disediakan oleh user
·         Mengontrol unit I/O untuk menerima informasi input dan menghasilkan output
·         Mentranslasikan program dari bentuk source yang disediakan oleh user menjadi bentuk objek yang berisi instruksi mesin
·         Menghubungkan dan menjalankan program aplikasi user-written dengan rutin library standar yang ada, seperti paket komputasi numerik Software sistem-lah yang bertanggungjawab untuk koordinasi semua aktifitas dalam sistem komputasi. Tujuan bagian ini adalah untuk memperkenalkan beberapa aspek dasar software sistem.
Manfaat IBM PC
  1. Kemudahaan penggunaan
  2. Daya Tempa
  3. Daya Kembang
  4. Expandibilitas

Sistem software. 
System software adalah abstrak, tidak memiliki bentuk fisik. Software tidak dibatasi oleh material serta tunduk pada hukum-hukum fisika atau oleh proses-proses manufaktur. Pengembangan software serta pengelolaan proyek pengembangan software adalah sulit karena kenyataan-kenyataan sebagai berikut :
1. kompleks, sehinggasulit untuk dipahami
2. tidak tampak, maka pengukuran kualitas software agak sulit dilakukan dan sulit melacak kemajuan pengembangannya
3. mudah berubah, karena mudah untuk dimodifikasi namun kita sulit sekali melihat terlebih dahulu konsekuensi dari perubahan-perubahan yang dilakukan. 
Software komputer adalah produk yang dihasilkan melalui serangkaian aktivitas proses rekayasa atau pengembangan, yang menghasilkan aktivitas berupa :
1. dokumen-dokumen yang menspesifikasikan program yang hendak dibangun
2. program yang dieksekusi komputer
3. dokumen yang menjelaskan program dan cara kerjanya program

Manfaat arsitektural arsitek komputer.
Arsitektur perangkat keras komputer tradisional terdiri dari empat komponen utama yaitu "Prosesor", "Memori Penyimpanan", "Masukan" (Input), dan "Keluaran" (Output). Pada saat awal, komputer berukuran sangat besar sehingga komponen-komponennya dapat memenuhi sebuah ruangan yang sangat besar. Sang pengguna – menjadi programer yang sekali gus merangkap menjadi menjadi operator komputer – juga bekerja di dalam ruang komputer tersebut.
Walaupun berukuran besar, sistem tersebut dikategorikan sebagai "komputer pribadi" (PC). Siapa saja yang ingin melakukan komputasi; harus memesan/antri untuk mendapatkan alokasi waktu (rata-rata 30-120 menit). Jika ingin melakukan kompilasi Fortran, maka pengguna pertama kali akan me-load kompilator Fortran, yang diikuti dengan "load" program dan data. Hasil yang diperoleh, biasanya berbentuk cetakan (print-out). Timbul beberapa masalah pada sistem PC tersebut. Umpama, alokasi pesanan harus dilakukan dimuka. Jika pekerjaan rampung sebelum rencana semula, maka sistem komputer menjadi "idle"/tidak tergunakan. Sebaliknya, jika perkerjaan rampung lebih lama dari rencana semula, para calon pengguna berikutnya harus menunggu hingga pekerjaan selesai. Selain itu, seorang pengguna kompilator Fortran akan beruntung, jika pengguna sebelumnya juga menggunakan Fortran. Namun, jika pengguna sebelumnya menggunakan Cobol, maka pengguna Fortran harus me-"load". Masalah ini ditanggulangi dengan menggabungkan para pengguna kompilator sejenis ke dalam satu kelompok batch yang sama. Medium semula yaitu punch card diganti dengan tape.

Referensi :




Kamis, 25 Oktober 2012

Arsitektur Set Instruksi dan CPU


1.   Arsitektur Set Instruksi
Set instruksi didefinisikan sebagai suatu aspek dalam arsitektur computer yang dapat dilihat oleh para pemrogram.
Dua bagian utama arsitektur komputer:

1. Instruction set architecture (ISA) / arsitektur set instruksi
ISA meliputi spesifikasi yang menentukan bagaimana programmer bahasa mesin akan berinteraksi oleh computer. ISA menentukan sifat komputasional computer.

2. Hardware system architecture (HSA) / arsitektur system hardware
HAS berkaitan dengan subsistem hardware utama computer (CPU, system memori dan IO). HSA mencakup desain logis dan organisasi arus data dari subsistem.

JENIS INSTRUKSI
- Data processing/pengoahan data : instruksi aritmetika dan logika.
- Data storage/penyimpanan data : instruksi-instruksi memori.
- Data movement/perpindahan data : instruksi I/O.
- Control/control : instruksi pemeriksaan dan percabangan.

- Instruksi aritmetika memiliki kemampuan untuk mengolah data numeric. Sedangkan instruksi logika beroperasi pada bit-bit word sebagai bit, bukan sebagai bilangan. Operasi-operasi tersebut dilakukan teutama untuk data di register CPU.
-       Instruksi-instruksi memori diperlukan untuk memindah data yang terdapat di memori dan register.
-       Instruksi-instruksi I/O diperlukan untuk memindahkan program dan data kedalam memori dan mengembalikan hasil komputasi kepada pengguna.

TEKNIK PENGALAMATAN
Ada 3 teknik dasar untuk pengalamatan, yaitu:
1. Pemetaan langsung (direct mapping), terdiri dari dua cara yakni Pengalamatan Mutlak (absolute addressing) dan Pengalamatan relatif (relative addressing).

-          Pengalamatan Mutlak
Untuk teknik pengalamatan ‘alamat mutlak’ ini, tidak terlalu mempermasalahkan kunci atribut karena diminta langsung menuliskan di mana alamat record yang akan di masukkan. Jika kita menggunakan hard disk atau magnetic drum, ada dua cara dalam menentukan alamat memorinya, yaitu (1) cylinder addressing dan (2) sector addressing. Jika kita menggunakan cylinder addressing, maka kita harus menetapkan nomor-nomor dari silinder (cylinder), permukaan (surface), dan record, sedangkan bila kita menggunakan sector addressing, maka kita harus menetapkan nomor-nomor dari sektor (sector), lintasan (track), dan permukaan (surface). Teknik ini mudah dalam pemetaan (pemberian) alamat memorinya. Sulitnya pada pengambilan (retrieve) data kembali, jika data yang kita masukkan banyak, kita bisa lupa di mana alamat record tertentu.

-          Pengalamatan relatif
Teknik ini menjadikan atribut kunci sebagai alamat memorinya, jadi, data dari NIM dijadikan bertipe numeric(integer) dan dijadikan alamat dari record yang bersangkutan. Cara ini memang sangat efektif untuk menemukan kembali record yang sudah disimpan, tetapi sangat boros penggunaan memorinya. Tentu alamat memori mulai dari 1 hingga alamat ke sekian juta tidak digunakan karena nilai dari NIM tidak ada yang kecil. Pelajari keuntungan dan kerugian lainnya.Teknik ini termasuk dalam katagori address space dependent.


2. Pencarian Tabel (directory look-up)
Teknik ini dilakukan dengan cara mengambil seluruh kunci atribut dan alamat memori yang ada dan dimasukkan ke dalam tabel tersendiri. Jadi tabel itu (misal disebut dengan tabel INDEX) hanya berisi kunci atribut (misalkan NIM) yang telah disorting (diurut) dan alamat memorinya. Jadi, sewaktu dilakukan pencarian data, tabel yang pertama dibaca adalah tabel INDEX itu, setelah ditemukan atribut kuncinya, maka data alamat yang ada di sana digunakan untuk meraih alamat record dari data (berkas/ file/ tabel) yang sebenarnya. Pencarian yang dilakukan di tabel INDEX akan lebih cepat dilakukan dengan teknik pencarian melalui binary search (dibagi dua-dua, ada di mata kuliah Struktur dan Organisasi Data 2 kelak) ketimbang dilakukan secara sequential. Nilai key field (kunci atribut) bersifat address space independent (tidak terpengaruh terhadap perubahan organisasi file-nya), yang berubah hanyalah alamat yang ada di INDEX-nya.

3. Kalkulasi (calculating).
Kalau pada teknik pencarian tabel kita harus menyediakan ruang memori untuk menyimpan tabel INDEX-nya, maka pada teknik ini tidak diperlukan hal itu. Yang dilakukan di sini adalah membuat hitungan sedemikian rupa sehingga dengan memasukkan kunci atribut record-nya, alamatnya sudah dapat diketahui. Tinggal masalahnya, bagaimana membuat hitungan dari kunci atribut itu sehingga hasilnya bisa efisien (dalam penggunaan memori) dan tidak berbenturan nilainya (menggunakan alamat yang sama).

DESAIN SET INSTRUKSI
Desain set instruksi merupakan masalah yang sangat komplek yang melibatkan banyak aspek, diantaranya adalah :
1. kelengkapan set instruksi
2. ortogonalitas (sifat indepedensi instruksi)
3. kompatibilitas :
- source code compatibility
- object code compatibility

Selain ketiga aspek tersebut juga melibatkan hal-hal sebagai berikut :
a. Operation Repertoire: Berapa banyak dan operasi apa saja yang disediakan, dan berapa sulit  operasinya
b. Data Types : tipe/jenis data yang dapat diolah.
c. Instruction Format : panjangnya, banyaknya alamat, dsb.
d. Register : Banyaknya register yang dapat digunakan .
e. Addressing : Mode pengalamatan untuk operand.

2. CPU
Central processing unit (CPU) adalah bagian dari sebuah komputer sistem yang melaksanakan instruksi dari program komputer , untuk melakukan aritmatika, logis, dan dasar input / output dari sistem operasi.

PENGERTIAN BUS
Pada motherboard terdapat saluran-saluran penghubung yang menghubungkan satu komponen dengan komponen lainnya. Saluran penghubung ini berupa garis-garis yang tercetak pada PCB motherboard. Melalui saluran-saluran inilah data, informasi, dan instruksi-instruksi yang diberikan pada komputer ditransfer/melintas dari komponen satu ke komponen lainnya. Data dan instruksi tersebut diangkut dalam wujud sinyal-sinyal elektronis yang mempunyai makna tertentu. Sekelompok saluran yang mempunyai fungsi yang sama disebut jalur atau bus. Saluran-saluran penghubung tadi disebut pula dengan istikah konduktor.

ORGANISASI BUS
Organsiasi bus merupakan sekumpulan dari bagian-bagian bus dimana tersusun menjadi satu,yang memungkinkan suatu bus dapat bekerja dan dapat dilakukan. Adapun bagian tersebut yaitu seperti Pengertian jalur tidak sama dengan saluran. Dalam hal ini, jalur adalah kata jamak dari saluran. Pahamilah penjelasan berikut ini: Jalur data (data bus) yang terdiri dari beberapa (sejumlah) saluran data, jalur adres (address bus) terdiri dari beberapa (sejumlah) saluran adreess dan jalur kontrol (control bus) terdiri dari beberapa (sejumlah) saluran control.

STRUKTUR BUS
Sebuah bus biasanya terdiri atas beberapa saluran. Sebagai contoh bus data terdiri atas 8 saluran sehingga dalam satu waktu dapat mentransfer data 8 bit. Secara umum fungsi saluran bus dikatagorikan dalam tiga bagian, yaitu saluran data, saluran alamat dan saluran control. Saluran data(data bus) adalah lintasan bagi perpindahan data antar modul. Secara kolektif lintasan ini disebut bus data. Umumnya jumlah saluran terkait dengan panjang word, misalnya 8, 16, 32 saluran dengan tujuan agar mentransfer word dalam sekali waktu. Jumlah saluran dalam bus data dikatakan lebar bus, dengan satuan bit, misal lebar bus 16 bit.

KONEKSI BUS
Bus merupakan lintasan komunikasi yang menghubungkan dua atau lebih komponen komputer. Sifat penting dan merupakan syarat utama bus adalah media transmisi yang dapat digunakan bersama oleh sejumlah perangkat yang terhubung apadanya. Karena digunakan bersama, diperlukan aturan main agar tidak terjadi tabrakan data atau kerusakan data yang ditransmisikan. Walaupun digunakan bersama namun dalam satu waktu hanya ada sebuah perangkat yang dapat menggunakan bus.

TIPE BUS
Berdasar jenis busnya, bus dibedakan menjadi bus yang khusus menyalurkan data tertentu, misalnya paket data saja, atau alamat saja, jenis ini disebut dedicated bus. Namun apabila bus dilalukan informasi yang berbeda baik data, alamat maupun sinyal kontrol dengan metode mulipleks data maka bus ini disebut multiplexed bus.  Keuntungan mulitiplexed bus adalah hanya memerlukan saluran sedikit sehingga dapat menghemat tempat, namun kerugiannya adalah kecepatan transfer data menurun dan diperlukan mekanisme yang komplek untuk mengurai data yang telah dimulitipleks.  Saat ini yang umum, bus didedikasikan untuk tiga macam, yaitu bus data, bus alamat dan bus  kontrol.

ALU (Aritmetik Logic Unit)
adalah sebuah sirkuit digital yang melakukan aritmatika dan logika operasi. ALU adalah sebuah blok bangunan fundamental dari central processing unit komputer, dan bahkan yang paling sederhana mikroprosesor mengandung satu untuk tujuan seperti timer mempertahankan. Prosesor ditemukan di dalam CPU modern dan unit pengolahan grafis ( GPU ) mengakomodasi ALUS sangat kuat dan sangat kompleks, sebuah komponen tunggal mungkin berisi sejumlah alus.

- Fixed Point
adalah tipe data yang nyata untuk nomor yang telah tetap jumlah digit setelah (dan kadang-kadang juga sebelum) titik radix (setelah titik desimal dalam notasi desimal bahasa Inggris '.'). Representasi fixed-point nomor dapat dibandingkan dengan (dan lebih menuntut komputasi) lebih rumit floating point representasi nomor.
Fixed-point nomor berguna untuk mewakili nilai-nilai pecahan, biasanya dalam basis 2 atau basis 10, ketika menjalankan prosesor tidak memiliki unit floating point (FPU) atau jika fixed-point menyediakan peningkatan kinerja atau akurasi untuk aplikasi di tangan. Paling rendah-biaya tertanam mikroprosesor dan mikrokontroler tidak memiliki FPU.

- Floating Point
floating point menjelaskan metode mewakili bilangan real dalam cara yang dapat mendukung berbagai nilai. Nomor, pada umumnya, mewakili sekitar untuk tetap jumlah digit yang signifikan dan ditingkatkan menggunakan eksponen . Dasar untuk scaling biasanya 2, 10 atau 16. Jumlah yang khas yang dapat diwakili tepat adalah dalam bentuk:

Signifikan digit × basis eksponen

Floating point merujuk pada fakta bahwa titik radix (titik desimal, atau, lebih umum di komputer, titik biner) dapat "mengambang", yaitu, dapat ditempatkan di mana saja relatif terhadap angka signifikan dari nomor tersebut. Posisi ini ditunjukkan secara terpisah dalam representasi internal, dan floating-point sehingga representasi dapat dianggap sebagai realisasi komputer notasi ilmiah.

CU (Control Unit)
adalah salah satu bagian dari CPU yang bertugas untuk memberikan arahan/kendali/ kontrol terhadap operasi yang dilakukan di bagian ALU (Arithmetic Logical Unit) di dalam CPU tersebut. Output dari CU ini akan mengatur aktivitas dari bagian lainnya dari perangkat CPU tersebut.
Pada awal-awal desain komputer, CU diimplementasikan sebagai ad-hoc logic yang susah untuk didesain. Sekarang, CU diimplementasikan sebagai sebuah microprogram yang disimpan di dalam tempat penyimpanan kontrol (control store). Beberapa word dari microprogram dipilih oleh microsequencer dan bit yang datang dari word-word tersebut akan secara langsung mengontrol bagian-bagian berbeda dari perangkat tersebut, termasuk di antaranya adalah register, ALU, register instruksi, bus dan peralatan input/output di luar chip. Pada komputer modern, setiap subsistem ini telah memiliki kontrolernya masing-masing, dengan CU sebagai pemantaunya (supervisor).

REGISTER
Adalah memori yang kecil pada computer yang bekerja dengan kecepatan sangat tinggi yang digunakan untuk melakukan eksekusi terhadap program-program komputer dengan menyediakan akses yang cepat terhadap nilai-nilai yang umum digunakan. Umumnya nilai-nilai yang umum digunakan adalah nilai yang sedang dieksekusi dalam waktu tertentu.

- Set Register
Prosesor memiliki 16 register 16-bit, meskipun hanya 12 dari mereka adalah tujuan yang benar-benar umum. Empat pertama telah mendedikasikan menggunakan:

• r0 (alias PC) adalah program counter. Anda bisa melompat dengan menentukan r0, dan  konstanta yang diambil langsung dari aliran instruksi menggunakan pasca-kenaikan mode pengalamatan r0. PC selalu bahkan.

• r1 (alias SP) adalah stack pointer. Ini digunakan oleh panggilan dan instruksi dorong, dan dengan penanganan interupsi. Hanya ada satu stack pointer; MSP430 tidak memiliki apa pun yang menyerupai mode supervisor. Pointer stack selalu bahkan; Tidak jelas apakah LSB bahkan diimplementasikan.

• r2 (alias SR) adalah register status.

• r3 ini didesain untuk 0. Jika ditetapkan sebagai sumber, nilainya adalah 0. Jika ditetapkan sebagai tujuan, nilai tersebut akan dibuang.


Cache Memory pada Komputer
Cache memory merupakan media penyimpanan data sekunder berkecepatan tinggi, dimana tempat menyimpan data atau informasi sementara yang sering digunakan atau diakses oleh komputer.

Fungsi Cache Memory
- Mempercepat Akses data pada komputer
- Meringankan kerja prosessor
- Menjembatani perbedaan kecepatan antara cpu dan memory utama.
- Mempercepat kinerja memory

Letak Cache Memory
       1.       Terdapat di dalam Processor (on chip )
       Cache internal diletakkan dalam prosesor sehingga tidak memerlukan bus eksternal, maka waktu aksesnya akan sangat cepat sekali
       2.       Terdapat diluar Processor(off chip)
berada pada MotherBoard, memori jenis ini kecepatan aksesnya sangat cepat,  meskipun tidak secepat chache memori jenis pertama

   Jenis Cache Memory
1.   L1 cache L1 Cache adalah Sejumlah kecil SRAM memori yang digunakan sebagai cache yang terintegrasi menyatu pada prosesor.
-     Berguna untuk menyimpan secara sementara instruksi dan data, dan memastikan bahwa prosesor memiliki supply data yangstabil untuk diproses sementara memori mengambil dan menyimpan data baru.
-     L1 cache (Level 1 cache) disebut pula dengan istilah primary cache, first cache, atau level one cache.
-     transfer data dari L1 cache ke prosesor terjadi paling cepat Kecepatannya mendekati kecepatan register

2.  L2 cache Arti istilah L2 Cache adalah Sejumlah kecil SRAM memori yang berada di motherboard dekat dengan posisi dudukan prosesor.
- Berguna untuk menyimpan sementara instruksi dan data, dan memastikan bahwa prosesor memiliki supply data yangstabil untuk diproses sementara memori mengambil dan menyimpan data baru
     - (Level 2 cache) secondary cache, second level cache, atau level two cache.
- L2 cache memiliki ukuran lbih besar dibandingkan L1 namun kecepatan transfernya sedikit lebih lama dari L1cache.
3. L3 cache jarang sekali ada, hanya ada di komputer tertentu.
         -  Berguna ketika terdapat cache yang hilang ”missing” pada cache L1&L2
         - L3 cache memiliki ukuran lbih besar dibandingkan L1 dan L2 namun kecepatan
           transfernya lebih lama dari L1cache dan L2 Cache. 

Elemen Cache Memory
-       Fungsi Pemetaan (Mapping)
 - Pemetaan blok-blok memori utama ke dalam saluran cache.
-  Pemetaan Langsung (Direct Mapping)
- Pemetaan Asosiatif  (Associative Mapping)
- Pemetaan Asosiatif Set (Set Associative Mapping)

-       Algoritma Penggantian
untuk memilih blok data mana yang ada di cache yang dapat diganti dengan blok  data baru
·         Least Recently used (LRU)
·         First in first out (FIFO)
·         Least frequently used (LFU)
·         Random

Cara Kerja Cache Memori

1. CPU membaca word memori  
2. Periksa di Cache Memory,
3. Jika ada akan dikirim ke CPU
4. Jika tidak ada akan dicari ke Memory Utama 
5. Dikirim ke Cache Memory lalu dikirim ke CPU

Memori virtual

Memori virtual menggabungkan RAM aktif dan memori aktif dalam bentuk cakram ke dalam berbagai macam alamat yang berdekatan.Dalam ilmu komputer, memori virtual adalah teknik manajemen memori yang dikembangkan untuk kernel multitugas. Teknik ini divirtualisasikan dalam berbagai bentuk arsitektur komputer dari komputer penyimpanan data (seperti memori akses acak dan cakram penyimpanan), yang memungkinkan sebuah program harus dirancang seolah-olah hanya ada satu jenis memori, memori "virtual", yang bertindak secara langsung beralamat memori baca/tulis (RAM).
Sebagian besar sistem operasi modern yang mendukung memori virtual juga menjalankan setiap proses di ruang alamat khususnya sendiri. Setiap program dengan demikian tampaknya memiliki akses tunggal ke memori virtual. Namun, beberapa sistem operasi yang lebih tua (seperti OS/VS1 dan OS/VS2 SVS) dan bahkan yang modern yang (seperti IBM i) adalah sistem operasi ruang alamat tunggal yang menjalankan semua proses dalam ruang alamat tunggal yang terdiri dari memori virtual.
Memori virtual membuat pemrograman aplikasi lebih mudah oleh fragmentasi persembunyian dari memori fisik; dengan mendelegasikan ke kernel beban dari mengelola hierarki memori (sehingga menghilangkan keharusan untuk program dalam mengatasi hamparan secara eksplisit); dan, bila setiap proses berjalan dalam ruang alamat khususnya sendiri, dengan menghindarkan kebutuhan untuk merelokasi kode program atau untuk mengakses memori dengan pengalamatan relatif. Virtualisasi memori adalah generalisasi dari konsep memori virtual.

Referensi
http://hackwary.blogspot.com/2012/01/arsitektur-set-instruksi.html
http://id.wikipedia.org/wiki/Memori_virtual